
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Graph Convolutional
Networks for Complex
Traffic Scenario
Classification
Tobias Hoek



Graph Convolutional
Networks for Complex

Traffic Scenario
Classification

by

Tobias Hoek

A thesis submitted to the Delft University of Technology in partial fulfillment of the requirements
for the degree of Master of Science, to be defended publicly on Wednesday, August 31, 2023, at

9:30.

Student number: 4592212
Project duration: December 1, 2022 – August 31, 2023
Thesis committee: Dr. H. Caesar, TU Delft, supervisor

Dr. C. Pek, TU Delft
A. Falkovén Kognic, supervisor
T. Johansson Kognic, supervisor



Graph Convolutional Networks for Complex Traffic Scenario Classification

Tobias Hoek

Abstract

A scenario-based testing approach can reduce the time
required to obtain statistically significant evidence of the
safety of Automated Driving Systems (ADS). Identifying
these scenarios in an automated manner is a challenging
task. Most methods on scenario classification do not work
for complex scenarios with diverse environments (high-
ways, urban) and interaction with other traffic agents. This
is mirrored in their approaches which model an individual
vehicle in relation to its environment, but neglect the inter-
action between multiple vehicles (e.g. cut-ins, stationary
lead vehicle). Furthermore, existing datasets lack diversity
and do not have per-frame annotations to accurately learn
the start and end time of a scenario.

We propose a method for complex traffic scenario clas-
sification that is able to model the interaction of a vehicle
with the environment, as well as other agents. We use Graph
Convolutional Networks to model spatial and temporal as-
pects of these scenarios. Expanding the nuScenes and Ar-
goverse 2 driving datasets, we introduce a scenario-labeled
dataset, which covers different driving environments and is
annotated per frame. Training our method on this dataset,
we present a promising baseline for future research on per-
frame complex scenario classification.

1. Introduction
Self-driving or autonomous vehicles (AVs) have received

significant attention in recent years due to their potential to
revolutionize transportation. These vehicles offer a promis-
ing solution to many of the drawbacks associated with tra-
ditional commuting methods. AVs have the potential to en-
hance the commuting experience in terms of comfort and
productivity during the ride, while also addressing societal
challenges such as emissions reduction [24], traffic conges-
tion resolution [38], and lower travel costs [14]. However,
one of the most significant advantages of AVs is their po-
tential to improve overall road safety for all traffic partic-
ipants. The existing simpler automation systems for vehi-
cles known as Advanced driver-assistance systems (ADAS)
show promise in reducing traffic incidents [23] already. On-
going research and car development aims to enhance traf-
fic safety through higher-level Automated Driving Systems

(ADS). To ensure superior performance of ADS compared
to human drivers, proper development and testing are cru-
cial. However, conducting test drives in real traffic poses
safety risks and requires an impractical amount of driving
miles to gather statistically significant evidence. Accord-
ing to [15], obtaining such evidence would require 275 mil-
lion failure-free miles, given the rarity of critical situations
in regular traffic scenarios. This timeframe is unfeasible
for the production of AVs using regular driving speeds. An
alternative solution involves conducting smaller test drives
where critical situations are simulated. By leveraging these
simulated scenarios, it is possible to obtain the same sta-
tistical evidence of ADS performance in critical situations
within a more manageable timeframe [31, 29, 28]. To keep
pace with the rapid development of these systems, multiple
countries are updating their legislation for the acceptance
of AVs. A clear example of such a change in legislation
is the regulation that is proposed by the EU (EU2019/2144
[8]). This regulation establishes type-approval requirements
for vehicles and components, emphasizing safety for all, in-
cluding occupants and vulnerable road users. While exist-
ing regulations covered ADAS and ADS evaluations, ad-
vancements towards SAE level 4 self-driving vehicles and
effective scenario-based testing led to adding critical sce-
narios to mandatory acceptance tests. These scenarios play
a vital role in gathering the required statistical evidence to
validate the safety performance necessary for regulatory ap-
proval. Consequently, it becomes crucial to determine if
your system is ready for these particular scenarios. Detect-
ing such scenarios within your dataset not only reveals in-
sights about dataset quality but also streamlines both vali-
dation and training processes. This could be done with the
use of a classification algorithm for scenarios. However,
this gives rise to two issues. Firstly, the most current sce-
nario classification methods target simpler situations. These
situations involve either a single vehicle or the vehicle’s in-
teraction with its surroundings. However, the few existing
approaches dealing with complex scenarios perform classi-
fication per-agent instead of per frame (where each frame is
a snapshot at a certain interval in the time dimension). Sec-
ondly, no comprehensive publicly available dataset exists
that provides per-frame labeling of scenarios. To address
these issues we present the following contributions:

1



• We designed a supervised scenario classification ap-
proach that is able to classify complex ego-centered
scenarios, which are not constrained to specific envi-
ronments (e.g. highways) and that requires modeling
the relation between agents, as well as agents and the
environment based on their position, direction, and ve-
locity.

• We extend Graph Convolutional Networks to incorpo-
rate the latest advances for representing agent-agent
and agent-environment interaction, as well as tempo-
ral aggregation.

• We created a scenario classification dataset by hand-
selecting scenarios and annotating every frame. This is
made as an extension of the publicly available datasets
nuScenes [5] and Argoverse 2 [42].

• We evaluate our method and related works on our
dataset and compare it against baselines, creating a ref-
erence approach for future work on our dataset.

2. Related work
The literature on scenario classification is limited. Addi-

tionally looking into closely related tasks such as maneuver
detection or trajectory prediction can be insightful. These
methodologies have in common that there are challenges in
the spatial and in the temporal aspect. The existing works
will be elaborated accordingly.

2.1. Scenario classification

Few existing works focus on scenario classification. A
method by [30] is based on rules and detects lane changes
of surrounding vehicles. It relies on distance measurements
between the ego vehicle, other vehicles and environmen-
tal features like lane markings. However, this rule-based
method will show its limitations when trying to classify
more complex scenarios involving multiple cars or strong
variations within a specific scenario.

[4] proposed a method that also uses the sensor mea-
surements taken from various sensors of the car, such as
the inertial measurement unit (IMU) or distance measures
to lanes or other cars. These raw measurements are used as
input channels for their CNN. This approach shows more
promise in terms of scalability compared to the rule-based
approach, but it still has limitations as it does not con-
sider the presence of other vehicles. In addition to the sen-
sor measurements, [33] uses dashcam footage within their
pipeline. This footage is merged into one feature block with
the help of intermediate object detection steps. This work
is limited because it is solely based on the detection of the
cars and does not use information such as lane markings.

Spatial aggregation. There are also models that use a
more comprehensive spatial aggregation. These works use a

form of intermediate representation. Methods that employ a
grid as an intermediate representation are proposed by [12]
and [3]. The former suggests a grid representation that in-
corporates occupancy and velocity. The latter also devel-
oped a grid representation, but in contrast, this grid is based
on polar coordinates and the velocity relative to the ego ve-
hicle. However, the main limitation of both these methods is
their inability to incorporate environment information (e.g.
road markings or centerlines of driveable road). In general,
grids have limitations. Low resolutions cause rasterization
artifacts and hinder the accurate shape depiction. Raising
resolution may alleviate these issues but will enlarge the
grid with excessive and unnecessary information.

Maintaining high resolution but a small input size, which
has a positive effect on computational efficiency, is ad-
dressed via graphs in [27], which is an approach designed
for vehicle behavior classification. In this work, the graph
encodes agent locations and points sampled on lane mark-
ings as vertices. Using a Graph Convolutional Network [18]
(GCN), the relation between all these vertices is processed
for further steps. This model can classify scenarios in-
volving actor-environment relationships and relationships
among various actors. However, it lacks critical informa-
tion about agent direction and velocity, which is essen-
tial for distinguishing scenarios in diverse situations, such
as the contrast between highway and urban driving set-
tings. Additionally, their method focuses on actions of all
agents, rather than actions involving or around the ego ve-
hicle. Several works use GCNs for trajectory prediction
models. In [32, 20, 21], a comparable graph input ap-
proach is employed. [32] differs from the other two be-
cause the edge weights are normalized based on the dis-
tance between agents. The convolution in LaneGCN [22]
differs from these three works because it uses dilated con-
volution [43] between the graph layers for a larger recep-
tive field. LaneGCN uses multiple different GCNs based
on the directional relations of the selected waypoints. Our
work differs from LaneGCN in terms of how the GCN is
used. They apply GCN solely to static map data, excluding
agents. Their temporal focus is on initial agent trajectories,
ignoring map evolution and agent-map relationships using
GCN. Our approach integrates both aspects, leveraging the
temporal evolution of the map and usage of GCN for agent-
map and agent-agent interactions.

Temporal aggregation. Several methods are used in lit-
erature to encode the temporal aspect of the scenario. Some
methods use Recurrent Neural Networks, e.g. LSTMs
[27, 20, 4, 16, 12] or GRUs [9]. These methods can suf-
fer from training inefficiency, slow computational speed,
and are prone to overfitting for small datasets due to their
large number of parameters [34]. A newer approach is the
use of attention mechanisms [37]. This is used in [33] or

2



in combination with LSTMs in [27]. These attention mod-
els show very promising results on temporal data, although
they also increase complexity significantly and require large
amounts of data. A simpler alternative involves applying
a conventional CNN across the temporal dimension. On
smaller datasets used for scenario classification tasks, this
shows good results either by performing this convolution on
crafted or learned features [32, 22, 12, 3] or merged deeper
within the model where the consecutive CNNS are alter-
nately on the spatial and the temporal aspect [21].

2.2. Datasets

Numerous datasets have been proposed for autonomous
vehicle perception [10, 5, 42, 35], prediction [13, 5, 42] and
planning [6, 1]. Unfortunately, the situation differs for the
scenario classification task. For this task, real-world traffic
scenarios are categorized into predefined classes per inter-
val of frequency f . Existing datasets for scenario classifi-
cation use either simulated data [3, 9] or data obtained in
limited environments, e.g. only highway data [30, 26]. Fur-
thermore, many datasets are not publicly available [12, 4].
While [6] offers information about scenarios, they label en-
tire sequences as scenarios, which is not suitable for precise
scenario classification. Instead, we label individual frames.
Furthermore, their work is auto-labeled and manually re-
viewed to guarantee high precision. In contrast, we manu-
ally reviewed two datasets to also guarantee a high recall.
This enables us to phrase scenario classification as a multi-
class classification problem.

3. Dataset
In order to develop and assess a scenario classification

technique, a corresponding dataset is essential. Given the
absence of an existing or accessible one, we generated our
own dataset. The process for creating this dataset is outlined
in this section.

3.1. Scenario definition

According to [36], a scenario defines as follows:

A scenario depicts the temporal evolution be-
tween scenes within a sequence, starting with an
initial scene and covering a specified duration.

Here a scene is defined as:

A snapshot of the environment, encompass-
ing scenery, dynamic elements, actors’ self-
representations, and entity relationships.

To create a list of relevant scenarios, we start from the sce-
narios proposed in the EU type-approval regulation [8, 7]
and remove scenarios that cannot be detected in public
datasets. Examples of these removed scenarios are collision

avoidance, emergency brake scenarios, and specific scenar-
ios such as blocking toll gates. Finally, we select 8 scenario
categories (Tab. 1). The frequency and duration statistics in
this table correspond to our dataset. Further details on this
will be provided in the scenario extraction paragraph.

# Scenario Frequency Duration
Mean(s) StDev (s)

0 No scenario - - -
1 Cut-in 77 4.7 1.8
2 Stationary vehicle in lane 42 8.1 3.8
3 Ego lane change right 47 4.3 1.5
4 Ego lane change left 43 4.6 1.2
5 Right turn at crossing 136 7.0 2.6
6 Left turn at crossing 117 6.7 2.4
7 Straight ahead at crossing 175 5.1 2.0

Table 1. Overview of the selected scenarios, their frequency within
the dataset and mean duration and corresponding standard devia-
tion (SD).

Here a cut-in (1) represents a scenario where another ve-
hicle changes lanes into the ego vehicles lane. Stationary
vehicle in lane (2) is a variation on a cut-out scenario, where
a stationary vehicle is in the ego lane, such that the ego ve-
hicle has to either brake or perform an obstacle avoidance
maneuver. 3 and 4 are ego lane changes in both directions.
5, 6, 7 represent the actions at crossings. No scenario (0)
indicates all other driving scenarios, including lane keeping
and more complex maneuvers not included in the list. This
list of scenarios is mutually exclusive and complete, thus
making it suitable for the scenario classification task.

3.2. Dataset creation

After defining the scenarios of interest we created the
dataset based on nuScenes and Argoverse 2. This process
involved three main phases. Initially, data was chosen and
labeled. Then, a preprocessing step aligned the differing
frequencies between the two datasets. Finally, to ensure a
better balance and eliminate less relevant timeframes, we
removed unnecessary timesteps in the dataset’s final stage.

Data selection and labeling. The traffic information used
for this dataset is obtained from existing public driving
datasets, specifically nuScenes [5] and Argoverse 2 [41].
In the selection phase, all the front-camera videos in the
datasets are inspected manually. A sequence is selected for
the dataset if it includes at least one of the explicitly de-
fined scenario classes (classes 1− 7) from Sec. 3.1). Mean-
ing that sequences with only the presence of class 0 are not
taken into account. This mitigates the extreme class imbal-
ance inherent in the task, as class 0 dominates the datasets.
These class 0 timeframes around labeled scenarios are taken
into account resulting in a sufficient number of occurrences
within the dataset. For each keyframe in the dataset, anno-

3



tated with bounding boxes for each agent, we label the cur-
rent scenario. This results in 312 sequences of 20 seconds
obtained from nuScenes, and 253 sequences of 15 seconds
from Argoverse, or a total of 565 sequences.

Frequency alignment. We use nuScenes and Argoverse
2, which are annotated at 2Hz and 10Hz respectively. We
use linear interpolation to bring both datasets to the same
frequency (4Hz). For Argoverse, this means that we inter-
polate between every 2nd and 3rd keyframe. This enables
us to train the same scenario classification model on both.

Scenario extraction. Instead of using complete se-
quences from the original datasets, we extract shorter se-
quences for each scenario. Our interest extends beyond
classification; we also need to determine precise scenario
start and end times, which requires temporal context. We
obtain this by cutting out all scenarios (except no scenario)
with a random amount of timesteps before and after each
scenario. This is limited to a maximum of 8, if available in
the original sequence, and a minimum of zero. This pro-
cedure has the advantage that it further reduces class im-
balance since most of the frames in the full sequences are
labeled as no scenario. This results in 652 sequences of
varying lengths, since the full sequences may contain mul-
tiple scenarios. Sequence durations range from 2 to 23 sec-
onds, with an average of 8 seconds. All data is sampled at
4Hz. The distribution between classes can be seen in Tab. 1.
We notice that the more complex scenarios (1,2,3,4) occur
less often than the crossing related scenarios. The standard
deviation is notably significant compared to the mean dura-
tion. This is unsurprising, as scenarios can be executed at
different speeds, leading to a broad range of durations.

4. Method
Our method utilizes Graph Convolutional Networks to

classify complex traffic scenarios, capturing agent-agent
and agent-environment interactions. Shown in Fig. 1, our
model takes graph inputs, comprising three core compo-
nents: spatial aggregation, temporal aggregation, and a clas-
sification head producing frame-wise class probabilities.

4.1. Graph construction

We represent each frame of the traffic scenario by a
graph. This graph is given by Gt = {Vt, At}, where t is
the frame index with t ∈ {1, ..., T} and T represents the
sequence length. For each frame, Vt denotes the graph’s
vertices with V ∈ RN×c. Here is N the number of vertices
present in the graph and c represents the feature channels. In
this case Vi = (x, y, ϕ, v) and c = 4. Here x, y represents
the bird’s eye view location of the vertex, and ϕ is the head-
ing angle both in an ego-centered frame. v is the velocity

in m/s of the agent represented by the ith index. See Fig. 2
for a visual explanation. For our method, the nuScenes x, y,
and ϕ had to be transformed to the ego frame. In Argoverse
2 this was already the case.

Waypoints are added to the graph similarly, at 3-meter
intervals along the centerlines of the driveable road. These
vertices have zero velocity such that Vi = (x, y, ϕ, 0). ϕ
is the driving direction of the road segment at this partic-
ular waypoint. The model will learn to distinguish road
waypoints and vehicles in a later stage. The edges between
vertices are denoted by adjacency matrices Ati ∈ RN×N .
Here i represents 5 different adjacency matrices employed
to learn diverse relationships. The first is Asuc, which
covers relations between waypoints and it successive way-
points. Apre is the same for preceding waypoints. AW2A

is the connection between waypoints and agents (excluding
ego). AE2W covers the relation between the ego-vehicle
and the waypoints, and at last AE2A is between the ego-
vehicle and the other agents.

Each adjacency matrix is applied in different stages
outlined in Sec. 4.2.1 and 4.2.2. To illustrate, we show
how the graph Gt for a scenario is constructed in Fig.2
and Eq.1. These illustrations provide insight into the cre-
ation of Vt and an Adjacency matrix respectively. The de-
picted relation is AE2A in this matrix, which includes self-
connections via the addition of the identity matrix. Without
self-connections, only the neighboring vertices are taken
into account in the GCN, not the vertice itself.

A+ I =



1 1 1 1 0 · · · 0
1 1 0 0 0 · · · 0
1 0 1 0 0 · · · 0
1 0 0 1 0 · · · 0
0 0 0 0 0 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · 0


N×N

(1)

4.2. Spatial aggregation

Spatial feature extraction occurs across three stages,
each stage is based on a different relation, such that the
model can learn whether a vertex is a waypoint or an agent.
The first one learns the spatial aspect of the map data and
their relation, the second one does the same for all the other
agents. The last stage is where the relation between the
environmental and agent features and the ego vehicle is
learned. Every stage is built upon a GCN [18]. The ma-
trix operations required to compute the new hidden layer
are as follows:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
(2)

To include self-loops, Ãt is obtained by adding the iden-
tity matrix I to At. Here A is the Adjacency corresponding
to the stage. The diagonal degree matrix D̃ is employed to

4



1 1 1 1
1
1
1

1
1

1
0
0

0 0
0

0

...

...

...

...

...... ... ... ...

1 1 1 1
1
1
1

1
1

1
0
0

0 0
0

0

...

...

...

...

...... ... ... ...

1 1 1 1
1
1
1

1
1

1
0
0

0 0
0

0

...

...

...

...

...... ... ... ...

c

N

T

Suc. Conv.

Pre. Conv.

Wayp. to 
Agent Conv. 

Temporal 
Conv.

N×128×T N×128×T N×128×T N×16×T T×8

Environment Representation Agent Representation Agent env. Fusion
Temporal 

Aggregation
Classification 

Head

1 1 1 1
1
1
1

1
1

1
0
0

0 0
0

0

...

...

...

...

...... ... ... ...

1 1 1 1
1
1
1

1
1

1
0
0

0 0
0

0

...

...

...

...

...... ... ... ...
G ={V, A}

V =

A =

((N×N)×5)×T

Ego to 
Agent Conv. 

Ego to wayp. 
Conv.

FC
-Layer

= Graph Convolution
= Conventional Convolution

= Fully Connected Layer

Graph Construction

+

FC
-Layer

FC
-Layer

+

FC
-Layer

FC
-Layer

Spatial Aggregation
x y φ v

Figure 1. The pipeline of our proposed scenario classification method. The titles of the outer boxes match the sections where they are
explained in more detail.

Ego

c

N

T

x y

d

φ v

Figure 2. Forming of the vertices V out of the graph G based on a
traffic scenario at a crossing consisting T frames. For illustration
purposes the waypoints are neglected in this figure

calculate the average of neighboring vertices. H denotes
the feature matrix prior to convolution, and W represents
the trained weights. Finally, σ represents an activation func-
tion, ReLu [11] in this case.

4.2.1 Environment representation

We represent the centerline of each drivable lane on the
road as a static vertex in the graph. ϕ is the direction
pointing towards its successive waypoint. Compared to
the agents v = 0 because a waypoint is static. Such that
Vi = (x, y, ϕ, 0). The spatial dependencies of these way-
points are extracted in two parallel convolution blocks. See
the environment representation part of Fig. 1. The objec-
tive of these two blocks is to learn the directional relation
between the centerline points.

The adjacency matrices used in these two steps are
{At}i∈{suc,pre}, (successive, preceding). Asuc is obtained
by using directional connections between a centerline way-
point and its successive point. Since the waypoints of lane

segments are ordered from start to end. The successive ad-
jacency for this specific segment is obtained by shifting this
identity matrix one place to the right. The connection is now
between a vertex and its successive vertex. Asuc is assem-
bled by combining these segment adjacency blocks into a
single matrix. Extra connections are added between the end
of one segment with the start of its succeeding segment. If a
lane segment is two or more successive lane segments (e.g.
a fork crossing), connections to the first points of both seg-
ments are added. Apre is constructed likewise but in the
opposite way as Asuc. Each of the parallel graph convo-
lution blocks consists of 4 layers of graph convolution fol-
lowed by a linear layer. The outcomes of both blocks are
summed together and fed through a fully connected layer
before passing to the next step. This approach is inspired
by the MapNet part of LaneGCN. [22]. For simplicity, we
don’t use the relations between the waypoint and their left
and right neighbors, which is the case in LaneGCN.

4.2.2 Agent representation

As mentioned earlier, agents are represented as graph ver-
tices Vi = (x, y, ϕ, v). The relationships among all agents
and the ego vehicle are encoded in the Agent-Environment
fusion part of Fig. 1. A graph convolution using AW2V

(Waypoint to vehicles) precedes this step. AW2V captures
relations between vehicles (excluding the ego vehicle) and
environment features from Sec. 4.2.1 if they are within the
distance threshold of d = 30m. To limit the first layer of
GCN to cars in the direct environment. The purpose of this
operation is to “update” the spatial information of the other
vehicles according to their relation with the environment.
This is done such that the relation between the agents and
the environment is taken into account when modeling the
relation between both separate parts and the ego vehicle.

5



Next, a GCN facilitated by AE2V is applied between the
ego vehicle and the features of other vehicles, obtained in
the previous step. AE2V is produced by connecting the ego
vehicle to all other vehicles within d = 30m. These connec-
tions are unweighted such that the model can learn the im-
portance weights of the connections themselves. This block
consists of two GCN layers, fewer than in the environment
representation, as the lower density of vertices (there are
fewer agents than waypoints) makes the required receptive
field achievable after just two layers.

4.2.3 Agent environment fusion

First, the features of the environment and the agents are
merged. This is done in the block running in parallel with
the agent representation block mentioned in Sec. 4.2.2. This
parallel structure allows the model to learn features simul-
taneously using both environmental and agent information,
while still preserving their distinctiveness. The relationship
between the ego vehicle and environmental features from
Sec. 4.2.1 is established using AE2E (Ego to Environment).
AE2E encapsulates ego vehicle to waypoint unidirectional
connections within d = 30m. These connections remain
unweighted, enabling the model to learn their individual im-
portance. The output of the GCN blocks is fed through a
fully connected layer separately before the second stage of
the fusion process. In the second part of the feature fusion
process, the outputs are summed and fed through a fully
connected layer to generate the final spatial encoding.

4.3. Temporal aggregation

As defined in Sec. 3.1, scenarios describe the temporal
development of a scene. Thus scenario classification cannot
depend solely on spatial data. Graph evolution over time
must be considered. Since we are interested in short-term
scenarios (8s on average), we use CNNs for temporal ag-
gregation. All the spatial information is captured by the
aforementioned blocks. The input of the CNN becomes of
shape H ∈ RN×F×T . Here, F represents the number of
channels of the features learned from the previous step, T
denotes the number of frames, and N the number of ver-
tices in the graph. A convolutional kernel with dimensions
1 × F × Q is applied to slide over this input along the T
dimensions to learn the temporal dependencies. We use di-
lated convolution [43] in the temporal dimension for a larger
receptive field without using too many layers. The input is
padded to maintain the same output size. It is important to
note that due to the kernel’s convolution over multiple time-
frames, which also include future timeframes, the model is
restricted to performing offline predictions exclusively.

4.4. Classification head

The last stage of the model consists of a fully con-
nected layer that outputs the class probability logits for ev-
ery frame of the temporal window that is observed, in the
shape T ×nclasses (= 8 in our case). A softmax function is
used to obtain class probabilities. The class with the high-
est probability is selected as the final prediction at frame t,
which gives a set of predictions Y = (c1, ..., cT ), where T
is the sequence length, as output.

4.5. Loss function

The network is trained by minimalizing the common
Cross-Entropy Loss for n classes:

LCE = −
n∑

i=1

yi log ŷi (3)

Where ŷi is the softmax probability for the ith class and yi
is 1 if the class label i is the correct ground truth label or 0
if this is not the case.

5. Implementation details
The model primarily uses PyTorch and PyTorch Geo-

metric (PYG) for GCN implementation and efficient graph
handling. Training occurs on an NVIDIA Titan RTX GPU.
To enhance computational efficiency, sparse form adjacency
matrices are employed, using two indices for connections
rather than dense matrices.

5.1. Spatial feature extractor

In Sec. 4.2.1 a block with 4 graph convolution layers
is detailed, featuring 4 layers and outputs of 16, 64, 128,
and 128 channels. The agent representation block contains
two graph convolution layers with an output feature dimen-
sion of 128. Layer normalization and ReLU activation are
applied GCN layer. The Agent-environment fusion block,
with two graph convolution layers, retains 128 dimensions.
In all three parts after every GCN layer, Layer Normaliza-
tion [2] and Rectified Linear Unit (ReLU) [11] are applied.

5.2. Temporal Aggregation

The temporal feature extractor is composed of four CNN
layers. The first layer reduces the feature dimensions from
128 to 16. The next two layers maintain 16 feature chan-
nels, and each uses a 1 × 3 kernel. In the first three layers,
asymmetrical padding of 1, 2, and 4 is applied in the time
dimension, respectively. Zero padding is used in the vertice
dimension to preserve the same dimensions. The last con-
volutional layer uses a kernel size of 1 × 7 with a padding
of 3 in the time dimension only. This is done for smooth-
ing the predictions. After each convolutional layer a Scaled
Exponential Linear Unit (SELU) [19] is applied.

6



5.3. Training process

The model is trained for 25 epochs using the Adam op-
timizer [17]. The learning rate is initiated at 1 × 10−4 and
decays with a factor of 0.1 after epochs 8,14 and 18. Class
weights are used to prevent the effects of class imbalance on
the classification output. The class weights are as follows:

Wi =
Nsamples

nclasses × nsamples,i
(4)

Where Wi is the weight for specific class i, Nsamples is
the total amount of samples, nclasses the total amount of
classes, and nsamples,i the amount of samples labeled as i.

6. Experiments
The proposed model’s performance assessment is eval-

uated in three steps. First, we compare it to simpler sce-
nario classification models to understand the impact of our
model’s elements. Then, we perform error analysis with
an Error distribution diagram for the top-performing model.
Finally, we assess per-class performance.

6.1. Ablation study

The metric used to compare different versions of the
models is the area under the precision-recall curve (PR-
AUC). This metric is advantageous because it focuses on
identifying positives, rather than attempting to balance neg-
atives, without the need to fine-tune a decision threshold.
PR-AUC is also well-suited for use on imbalanced datasets.
The average PR−AUC is calculated by finding the PR-
AUC of every class first using a one-versus-all strategy. We
conducted an ablation study to assess the significance of
each component of the model. The findings are summarized
in Tab. 2. The full model (as in Fig. 1) outperforms all other
variations. Residual connections over the main blocks of
Fig. 1 perform worse. Introducing weighted adjacency ma-
trices, where connections within the adjacency matrices re-
flect the reciprocal of the distance (d−1) such that the weight
of closer vehicles is larger. This weighting leads to perfor-
mance suppression.

The importance of map data becomes evident when ex-
amining the results of the experiment in which the map data
is removed. Substituting the temporal aggregation method
with an LSTM instead of a convolution results in poorer per-
formance compared to the full model, but the inclusion of
residual connections enhances performance in this case. A
model with the same spatial encoding as the full model, but
without any temporal aggregation is shown as ”No temp.
aggregation”. The low PR-AUC shows the importance of
temporal aggregation. Furthermore, the removal of ego con-
volution from Sec 4.2.2 results in a substantial performance
drop, although it still performs better than the model lack-
ing both ego convolution and map convolution. The worst

model is the baseline, comprising of a single GCN applied
across all available vertices, followed by a CNN in the tem-
poral dimension. This architecture fails to capture the dis-
tinctions between waypoints and agents, leading to a signif-
icant performance decline.

6.2. Error analysis

Continuous sequences present various challenges, such
as varying sequence lengths, potential merging or fragmen-
tation of scenarios, and fuzzy scenario boundaries that are
difficult to determine even for humans. To gain a better
understanding of the model’s predictions, we proceeded to
conduct more comprehensive testing on the model that ex-
hibited the best results in the previous section. The ini-
tial step involved generating the Error Distribution Diagram
(EDD) [40]. See Fig 3. The EDD breaks down False-
Positives (FP) and False-Negatives (FN) into multiple cate-
gories [39]. For FP, we consider three subcategories:

1. Overfill: The prediction extends beyond the ground
truth boundary of the scenario.

2. Merge: The prediction combines two separate scenar-
ios of the same class into one.

3. Insertion: The model predicts a scenario where no sce-
nario is actually happening.

For FN, we have three subcategories:

1. Underfill: The prediction does not cover the entire
ground truth of a scenario.

2. Fragmenting: The model splits the scenario into
pieces.

3. Deletion: The prediction fails to detect a scenario.

For multi-class classification, we distinguish between dif-
ferent cases when an FN classification occurs [25]. Under-
fill is divided into two categories: substitute underfill, where
the underfill error is replaced by another class, and normal
underfill, where it is replaced by 0. Similarly, fragmenta-
tion has substitute fragmentation and normal fragmentation.
When a boundary lies between two non-zero scenarios, the
underfill-overfill error option also comes into play. The oc-
currence percentages of these error subcategories are visual-
ized in the EDD. Overfill, underfill and underfill-overfill are
placed above the serious error line because these are mis-
takes that are inevitable considering the fuzzy boundaries
of the scenarios beginning and end.

6.3. Per-class performance

In addition to comparing different model setups using
PR-AUC, we offer a more intuitive metric for each class.
Tab. 3 shows class prediction accuracy per dataset and the
class distribution in the training data. Classes 1 and 2 show

7



Test setup Map conv.
(Sec. 4.2.1)

Ego conv.
(Sec. 4.2.2)

Residual
conn.

Map
data

Weighted
adj.

Temp.
agg. PR−AUC

Baseline ✓ Conv. 38.9
Baseline + ego conv. ✓ ✓ Conv. 42.7
Baseline + map conv. ✓ ✓ Conv. 47.2
No temp. aggregation ✓ ✓ ✓ None 33.0
LSTM ✓ ✓ ✓ LSTM 43.1
LSTM + res. conn. ✓ ✓ ✓ ✓ LSTM 50.4
Full model - map data ✓ ✓ Conv. 29.8
Full model + weight. adj. ✓ ✓ ✓ ✓ Conv. 52.7
Full model + res. conn. ✓ ✓ ✓ ✓ Conv. 56.0
Full model ✓ ✓ ✓ Conv. 58.4

Table 2. Overview of different trained models based on different ablations in the model, showing the importance of each part. The map
convolution refers to the part described in Sec 4.2.1, and the Ego convolution refers to the block in Sec. 4.2.2 The differences between each
row of the table are explained in Sec. 6.1.

# Scenario nuScenes Argoverse 2 Total
Acc. Occ. Acc. Occ. Acc.

0 No scenario 60.0 - 64.7 - 62.3
1 Cut-in 48.4 11 48.7 66 48.2
2 Stationary vehicle in lane 48.1 34 - 8 48.2
3 Ego lane change right 66.7 29 93.8 18 70.8
4 Ego lane change left 67.9 27 42.4 16 52.2
5 Right turn at crossing 60.0 93 50.0 43 56.8
6 Left turn at crossing 73.8 78 79.4 39 75.3
7 Straight ahead at crossing 54.5 74 58.4 101 56.5

Table 3. Validation accuracy of each class and their occurrence in
the training split divided by dataset. No accuracy is given for class
2 in the Argoverse dataset because there is no occurrence in the
validation set.

lower accuracy on both sets, which can be attributed to two
reasons. Firstly, their occurrences are fewer compared to
others. Secondly, these scenarios are more complex, they
require information from the relation between agents and
between agents and the environment. The accuracy on class
0 is also high because this is still present in every sequence
and therefore dominant in the train set. Another positive
insight is that overall accuracy is similar per class for both
datasets. Despite some scenarios being underrepresented in
one dataset (like class 2), the model generalizes well across
traffic scenarios, not just specific datasets. In summary, the
model is trained with relatively few instances of each class.
This is particularly noticeable when compared to previous
scenario classification studies. However, it continues to ex-
hibit satisfactory performance.

6.4. State of the art comparison

The literature presents various works on scenario classi-
fication. However, these works often struggle with complex
scenarios. [27] is capable of classifying more complex sce-
narios. To compare performance we conducted compara-
tive tests using their model on our dataset. Implementation-

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pr
ed

ic
tio

n 
di

st
rib

ut
io

n

True Positive

True Negative

Overfill

Underfill

Insertion

Sub. underfill

Substitution

True Positive (48.1%)
True Negative (12.1%)
Overfill (3.7%)
Underfill (6.8%)
Overfill-underfill (0.5%)
Fragmentation (0.0%)
Merge (0.0%)
Insertion (3.8%)
Deletion (1.1%)
Sub. underfill (14.2%)
Sub. fragmentation (1.8%)
Substitution (8.0%)
serious error line

Figure 3. Error Distribution Diagram corresponding to the best-
performing model from Tab. 2.

wise, there are notable distinctions between the models.
Firstly, our spatial aspect relies on Cartesian coordinates,
theirs is based on the quadrant in which a vehicle or object
is situated relative to another. secondly, their work performs
classification per graph vertice instead of per timestep. This
means that for a given observation window of length T
with N detected objects it outputs N class predictions in-
stead of T , as in our work. To make testing on our dataset
possible, some alterations had to be made in the model of
Mylavarapu [27]. Details on these alterations are described
in Appendix A. The comparative results of these experi-
ments can be found in Tab. 4. In the table, we differentiate
between ego and non-ego actions. Ego actions are solely
related to the ego vehicle’s actions and their relationship

8



with the environment, indicated by a checkmark. Non-ego
actions involve interactions between several agents and the
ego vehicle and their relation to the environment. We can

# Scenario Ego
action Ours [27]

0 No scenario - 62.3 64.1
1 Cut-in - 48.2 58.6
2 Stationary vehicle in lane - 48.1 59.9
3 Ego lane change right ✓ 70.8 39.6
4 Ego lane change left ✓ 52.2 40.6
5 Right turn at crossing ✓ 56.8 82.0
6 Left turn at crossing ✓ 75.3 62.4
7 Straight ahead at crossing ✓ 56.5 59.0
- Average accuracy - 58.8 58.3
- Epoch training time - 46.9 156.4
- Ego action avg. - 62.3 56.72
- Non-ego action avg. - 48.15 59.3

Table 4. Accuracy and training time per epoch comparison be-
tween our work and the model of Mylavarapu [27] altered to per-
form per frame scenario classification instead of per vertice clas-
sification.

conclude from Tab. 4 that the overall accuracy is very com-
parable. As we can see our model outperforms the ego ac-
tions specifically on the lane changes. The explanation for
this lies in the fact that our model is ego-centered. This is
because, in our GCN part, several layers are focused solely
on the relation between the ego vehicle and the environ-
ment or actors. In their work, the GCN is based on the rela-
tion between all present vertices. Furthermore, our model’s
better performance in predicting ego actions is attributed
to the quadrant-based approach’s lower sensitivity to minor
changes like during for example lane changes, as it only de-
tects differences when a vertex moves to another quadrant.
Next to this accuracy comparison, we compared the average
required training time per epoch for both models. These re-
sults are also shown in Tab. 4. This is training only, so no
validation. This shows that our model trains more than three
times faster than theirs. Furthermore, in order to train their
model on our dataset, we had to shrink the input size due
to memory constraints. These factors collectively showcase
the substantial computational efficiency advantage of our
model. The explanation for this is that their temporal ag-
gregation method, based on a combination of LSTMs and
attention is significantly more complex than ours.

7. Discussion
To form a well-informed opinion about the results in pre-

vious sections, we must place them in context. To assess the
PR-AUC’s significance, we compare it to a random guess-
ing model’s PR-AUC. This value, calculated from positive
occurrences in the validation set ( PN ), averages 12.5. Con-

trasted with the top method in Tab. 2 (58.8), the model ef-
fectively identifies and detects scenarios. The per-class ac-
curacy showcases the model’s ability to classify all trained
classes. Additionally, it holds promise for future implemen-
tations. The model’s generalization extends beyond a sin-
gle dataset, enabling further training with diverse sources
for enhanced performance. This also brings possibilities
to add scenarios that are not present in the currently used
datasets. When comparing most methods in Sec. 2 it is
trained on significantly less data and could have potential
there as well. Our distinguishing aspect is its per-frame
classification. This also presents a challenge in terms of
performance. The EDD graph becomes insightful in this
context. Even human annotators disagree about the precise
beginning and end of a scenario. When we accept under-
fill and overfill errors to some extent, our model performs
even better than at first sight. The work we compared our
performance to currently shows comparable performance
when modified for per-frame classification. But there are
still other aspects where our model outperforms the state of
the art. First of all in terms of flexibility. [27] only supports
fixed sequence lengths. Our model does support varying
sequence lengths. Another distinction lies in the substantial
difference in training time among the models. Seeing this as
a metric for computational efficiency, our model’s selection
of straightforward components like temporal convolutions
over complex attention models demonstrates its advantages
in this regard. In conclusion, we’ve developed a compet-
itive method with scalability and computational efficiency
advantages compared to the related works. Its potential is
significant, especially when further refined, optimized, and
supplemented with additional data.

8. Conclusion
In this work, we discussed that scenario-based testing of

ADS is very time-efficient. Finding these scenarios stream-
lines this process more. We succeeded in designing a sce-
nario classification method that is able to find the beginning
and the end of diverse and complex scenarios. The model is
based on GCNs for the spatial aspects and on CNNs for the
temporal aspect. The combination makes it possible to learn
to classify scenarios that are based on interactions of a vehi-
cle between the environment as well as other vehicles. We
showed that the model only classifies a serious error in less
than 30% of the frames. This is achieved through training
and validating the model on a dataset we developed, which
extends nuScenes and Argoverse2, specifically designed for
scenario classification. This model now forms a benchmark
for future works on this dataset. Future works for this clas-
sifier will cover advanced network structures as attention
models implemented in various parts of the model. This
could be implemented for improved spatial aggregation as
well as temporal aggregation.

9



Acknowledgment

Many thanks to everyone at Kognic for their support, es-
pecially Andreas Falkovén and Tommy Johansson for their
daily guidance. I am also grateful to Dr. Holger Caesar for
his valuable insights and guidance. All of Your contribu-
tions played a vital role in the success of this work. Thank
you all.

Appendix

A. Comparison to Mylavarapu et al.

When we initially compare the model presented in [27]
study with our own, it appears quite distinct. In broad terms,
their approach takes camera footage as input and generates
an activity label for each node within the graph. Specif-
ically, these labels include: 1) moving away, 2) moving
towards us, 3) parked, 4) left lane change, 5) right lane
change, and 6) overtaking. Meaning that nodes that rep-
resent waypoints are labeled as parked.

Upon closer examination, the similarity between our
model and theirs is more significant than anticipated. In
both models, there is a clear distinction between spatial and
temporal encoding. The difference in implementation is that
the vertices in their model are of shape Vi = (O). Where O
is the object type O = {vehicle, waypoint}. This means
that a waypoint is labeled as 1 and a car as 0. In our model,
the nodes are given as Vi = (x, y, ϕ, v). Their model em-
ploys multi-relation GCNs over the quadrant in which two
vertices are relative to each other, in ours, we use multi-
relation GCNs based on the object types. In their model
the temporal aspect is captured using LSTMs and attention
networks in ours this is done with simple convolution over
the time dimension. Also as discussed earlier our model
focuses on the ego vehicle because several GCN layers per-
form convolution only on the relation between the ego vehi-
cle and its environment or the surrounding agents. In their
model, the GCN uses the relation between all the present
vertices. This means that in the rare case that two scenarios
happen simultaneously within the observation reach, their
model not necessarily classify the correct scenario. Ours
will be more likely to.

Because of these differences, certain adjustments were
necessary prior to conducting a comparative test. As the
published code lacks the semantic segmentation part, this
is neglected. A graph made out of our dataset is used
as input. We get adjacency in their format by computing
angles between vertices. These angles are then replaced
by (0, 1, 3, 4, 5), which stand for top-left, bottom-left, top-
right, bottom-right, and self-edge. This applies if the angle
matches a quadrant or is a self-loop. The self-loops are on
the diagonal. Furthermore, because the model is designed
for fixed sequence lengths, the input sequences are padded

to a fixed size. The padding is cut off after the GCN part.
Since every timestep is handled separately inside the GCN,
this padding does not affect the other timesteps. Converting
their model to do classification over the timesteps instead
of the vertices, the last AvgPool layers and fully connected
layers are applied on the vertice dimension instead of the
temporal dimension resulting in a T × nclasses output in-
stead of N × nclasses.

B. Data augmentation
To address the problem that our dataset is relatively small

and imbalanced, we conducted some experiments with data
augmentation. We did several experiments for the less-
represented classes. The outcomes of these varied experi-
ments are presented in Table 5. To see what the effect is
on the other classes, the accuracy is given for every class as
well as the average. The experiments are explained in more
detail below.

Stretching In the experiments labeled as ”stretching,” we
modified existing scenarios by adjusting the graph’s x (the
longitudinal ego driving direction) component by a factor of
1.02 and the y component by 0.98. This ensured that none
of the values remained unchanged. The velocity and driving
angle were adjusted accordingly to match the correct values
for the newly stretched frames.

Mirroring Under the assumption that a scenario could
happen from two sides, we conducted experiments with
mirroring. This means the y components are multiplied by
−1. This way it is mirrored along the longitudinal axis from
the ego perspective. For the special cases of left and right
lane change the label is also changed after mirroring the
scenario. This means that ”mirror class 4” in the table is
obtained by mirroring the existing scenarios labeled as class
3. For the other classes, the label remains the same.

Results Based on the information presented in Table 5, it
is evident that the outcomes of the data augmentation ex-
periments have not resulted in the expected improvements
in performance. Specifically, when we observe the impact
of stretching on classes 1, 2, and 4, as well as mirroring
classes 1, 3, and 4, we observed a decrease in the accuracy
of these respective classes. In the other experiments, there
was a notable enhancement in the performance of those in-
dividual classes. However, this improvement came at the
cost of a reduction in the overall average performance. This
suggests that while the augmented data may benefit specific
classes, it affects the models’ ability to generalize to other
classes negatively. Interestingly, when we applied mirroring
to class 3, we observed an increase in the average perfor-
mance but a decrease in the accuracy of class 3 itself. When

10



combining all these data augmentation techniques the per-
formance appeared to be similar to the original dataset. Due
to the unpredictability of these outcomes and the relatively
low impact on the overall results, no data augmentation was
used in the design and validation phase of this network.

C. Output visualization
To gain a better understanding of the different model per-

formances we visualized a specific scenario in Fig 5. To
gain a better understanding of this specific scenario, a snap-
shot of the front camera is shown in Fig. 4 Where we see the
agent cutting in from the right. In this visualization, only
the relevant vehicles are plotted. Meaning that we have the
ego vehicle and one agent. To improve clarity, we’ve repre-
sented the (x, y) coordinates at intervals of every 2 frames,
effectively creating a 2Hz frequency display. The green sec-
tions denote drivable road segments. Looking closer at the
visualization we notice that it is a cut-in scenario. The agent
comes in from the side of the road. The decreasing gap be-
tween the ego points as time progresses implies braking, the
widening gap between the locations of the agents indicates
that there is acceleration happening within the lane. The
outputs of the different models for this specific scenario are
shown in Table 6. Compared to the ground truth the full
model performs quite well. The scenario is detected too
early so the predictions at frames 5 and 6 will be labeled as
overfill for the EDD. The importance of temporal aggrega-
tion is shown in the model ”No temporal agg”. First of all, it
shows a lot of wrong classifications, but secondly, it fails to
learn the temporal aspect of any scenario. This can be seen
because it switches between classes at high frequency and
scenario occurrences of 1 frame exist. This is not the case
in real-world scenarios. The LSTM learns that there is a cut
in the present within this sequence since it is only predict-
ing 1’s and 0s, but it fails the timing. Note that this example
is only for illustrational purposes and that it does not nec-
essarily represent the performance of the separate models,
this can be seen in Table 2.

In Table 6, you can see the results of various models ap-
plied to this specific scenario. The full model, when com-
pared to the ground truth, demonstrates good performance.
However, it appears to detect the scenario a bit early, lead-
ing to frames 5 and 6 being erroneously labeled as over-
fill for the EDD. The significance of temporal aggregation
becomes apparent when examining the ”No temporal agg”
model. Firstly, it exhibits a high number of incorrect clas-
sifications. Moreover, it fails to capture the temporal aspect
of the scenario correctly. This can be seen in the frequent
switches between classes over time. These rapid switches in
scenarios are never the case in real-world data. The LSTM
model learns the correct scenario since there are only 0s and
1s present, but it fails to learn the timing of the scenario. It’s
important to note that this example serves purely illustrative

Figure 4. Snapshot of the front camera during the scenario de-
picted in Fig. 5.

purposes and may not accurately represent the performance
of individual models. This performance of the models is
detailed in Table 2.

11



Class
Experiment 0 1 2 3 4 5 6 7 Avg.
No augmentation 62.3 48.2 48.2 70.8 52.2 56.8 73.3 56.5 58.8
Stretching class 1 60.0 39.9 67.9 64.2 31.9 43.6 65.6 44.5 52.2
Stretching class 2 62.2 58.0 64.7 63.2 55.1 49.2 64.0 41.1 57.2
Stretching class 3 65.7 44.4 62.6 57.6 52.9 50.2 65.3 47.7 55.7
stretching class 4 61.8 50.8 54.6 65.1 42.0 48.0 72.2 49.7 55.5
Mirror class 1 64.2 25.4 54.0 56.6 44.9 63.9 66.7 52.2 53.5
Mirror class 2 66.1 36.3 59.9 58.5 49.3 47.6 73.1 51.6 55.3
Mirror class 3 63.8 63.7 71.7 47.8 49.4 59.3 10 50.5 59.3
Mirror class 4 64.0 38.9 57.8 66.0 47.1 45.8 58.0 55.5 54.1
All of the above 61.3 39.9 57.7 65.1 50.7 57.5 78.5 56.9 58.3

Table 5. Different data augmentation experiments and their results on the model’s accuracy

0 10 20 30 40
x(m)

4

2

0

2

4

6

8

10

12

y(
m

)

0 2 4 6 8 10 12 1416182022

02468101214 16 18 20 22

ego
Agent

Figure 5. Bird’s eye view visualization of a cut in (class 1) scenario.

Frame
Model version 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Ground truth 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
Full model 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
LSTM (with res. conn.) 1 1 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
No temporal agg. 1 1 1 2 1 1 1 1 3 2 3 3 3 3 2 2 3 3 3 3 3 3 3 3
Baseline 0 1 1 1 1 1 1 1 1 0 0 0 2 2 2 2 2 2 2 2 2 2 2 0

Table 6. Per frame classification outputs of different model versions on the traffic scenario illustrated in Fig. 5.

12



References

[1] Matthias Althoff, Markus Koschi, and Stefanie Manzinger.
CommonRoad: Composable benchmarks for motion plan-
ning on roads. In 2017 IEEE Intelligent Vehicles Symposium
(IV), pages 719–726, Los Angeles, CA, USA, June 2017.
IEEE. 3

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-
ton. Layer Normalization, July 2016. arXiv:1607.06450 [cs,
stat]. 6

[3] Halil Beglerovic, Jonas Ruebsam, Steffen Metzner, and Mar-
tin Horn. Polar Occupancy Map - A Compact Traffic Repre-
sentation for Deep Learning Scenario Classification. In 2019
IEEE Intelligent Transportation Systems Conference (ITSC),
pages 4197–4203, Oct. 2019. 2, 3

[4] Halil Beglerovic, Thomas Schloemicher, Steffen Metzner,
and Martin Horn. Deep Learning Applied to Scenario Clas-
sification for Lane-Keep-Assist Systems. Applied Sciences,
8(12):2590, Dec. 2018. Number: 12 Publisher: Multidisci-
plinary Digital Publishing Institute. 2, 3

[5] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuScenes: A Multi-
modal Dataset for Autonomous Driving. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 11618–11628, Seattle, WA, USA, June 2020.
IEEE. 2, 3

[6] Holger Caesar, Juraj Kabzan, Kok Seang Tan, Whye Kit
Fong, Eric Wolff, Alex Lang, Luke Fletcher, Oscar Bei-
jbom, and Sammy Omari. NuPlan: A closed-loop ML-based
planning benchmark for autonomous vehicles, Feb. 2022.
arXiv:2106.11810 [cs]. 3

[7] Council of European Union. Annexes to the commision im-
plementing regulation (EU) no 2019/2144, 2022. 3

[8] Council of European Union. Commision implementing reg-
ulation (EU) no 2019/2144, 2022. 1, 3

[9] Ahmetcan Erdogan, Burak Ugranli, Erkan Adali, Ali Sen-
tas, Eren Mungan, Emre Kaplan, and Andrea Leitner. Real-
World Maneuver Extraction for Autonomous Vehicle Vali-
dation: A Comparative Study. In 2019 IEEE Intelligent Ve-
hicles Symposium (IV), pages 267–272, June 2019. ISSN:
2642-7214. 2, 3

[10] A Geiger, P Lenz, C Stiller, and R Urtasun. Vision meets
robotics: The KITTI dataset. The International Journal of
Robotics Research, 32(11):1231–1237, Sept. 2013. Pub-
lisher: SAGE Publications Ltd STM. 3

[11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep
Sparse Rectifier Neural Networks. In Proceedings of the
Fourteenth International Conference on Artificial Intelli-
gence and Statistics, pages 315–323. JMLR Workshop and
Conference Proceedings, June 2011. ISSN: 1938-7228. 5, 6

[12] Richard Gruner, Philip Henzler, Gereon Hinz, Corinna Eck-
stein, and Alois Knoll. Spatiotemporal representation of
driving scenarios and classification using neural networks. In
2017 IEEE Intelligent Vehicles Symposium (IV), pages 1782–
1788, June 2017. 2, 3

[13] John Houston, Guido Zuidhof, and Luca Bergamini et al.
One thousand and one hours: Self-driving motion prediction
dataset. In CoRL, 2020. 3

[14] Ihab Kaddoura, Joschka Bischoff, and Kai Nagel. Towards
welfare optimal operation of innovative mobility concepts:
External cost pricing in a world of shared autonomous vehi-
cles. Transportation Research Part A: Policy and Practice,
136:48–63, June 2020. 1

[15] Nidhi Kalra and Susan M. Paddock. Driving to safety:
How many miles of driving would it take to demonstrate au-
tonomous vehicle reliability? Transportation Research Part
A: Policy and Practice, 94:182–193, Dec. 2016. 1

[16] Aida Khosroshahi, Eshed Ohn-Bar, and Mohan Manubhai
Trivedi. Surround vehicles trajectory analysis with recur-
rent neural networks. In 2016 IEEE 19th International Con-
ference on Intelligent Transportation Systems (ITSC), pages
2267–2272, Nov. 2016. ISSN: 2153-0017. 2

[17] Diederik P. Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization, Jan. 2017. arXiv:1412.6980 [cs]. 7

[18] Thomas N. Kipf and Max Welling. Semi-Supervised Clas-
sification with Graph Convolutional Networks, Feb. 2017.
arXiv:1609.02907 [cs, stat]. 2, 4

[19] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and
Sepp Hochreiter. Self-Normalizing Neural Networks, Sept.
2017. arXiv:1706.02515 [cs, stat]. 6

[20] Xin Li, Xiaowen Ying, and Mooi Choo Chuah. GRIP:
Graph-based Interaction-aware Trajectory Prediction. In
2019 IEEE Intelligent Transportation Systems Conference
(ITSC), pages 3960–3966, Oct. 2019. 2

[21] Xin Li, Xiaowen Ying, and Mooi Choo Chuah. GRIP++:
Enhanced Graph-based Interaction-aware Trajectory Predic-
tion for Autonomous Driving, May 2020. arXiv:1907.07792
[cs]. 2, 3

[22] Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song
Feng, and Raquel Urtasun. Learning Lane Graph Represen-
tations for Motion Forecasting, July 2020. arXiv:2007.13732
[cs]. 2, 3, 5

[23] W.J.R. Louwerse and S.P. Hoogendoorn. ADAS safety im-
pacts on rural and urban highways. In IEEE Intelligent Vehi-
cles Symposium, 2004, pages 887–890, June 2004. 1

[24] Moneim Massar, Imran Reza, Syed Masiur Rahman,
Sheikh Muhammad Habib Abdullah, Arshad Jamal, and Fa-
had Saleh Al-Ismail. Impacts of Autonomous Vehicles on
Greenhouse Gas Emissions—Positive or Negative? In-
ternational Journal of Environmental Research and Public
Health, 18(11):5567, Jan. 2021. Number: 11 Publisher:
Multidisciplinary Digital Publishing Institute. 1

[25] David Minnen, Tracy Westeyn, Thad Starner, Jamie Ward,
and Paul Lukowicz. Performance metrics and evaluation
issues for continuous activity recognition,” in Performance
Metrics for Intelligent Systems. Proceedings of Performance
Metrics in Intelligent Systems Workshop, Jan. 2006. 7

[26] Sajjad Mozaffari, Omar Y. Al-Jarrah, Mehrdad Dianati, Paul
Jennings, and Alexandros Mouzakitis. Deep Learning-Based
Vehicle Behavior Prediction for Autonomous Driving Ap-
plications: A Review. IEEE Transactions on Intelligent
Transportation Systems, 23(1):33–47, Jan. 2022. Conference

13



Name: IEEE Transactions on Intelligent Transportation Sys-
tems. 3

[27] Sravan Mylavarapu, Mahtab Sandhu, Priyesh Vijayan,
K Madhava Krishna, Balaraman Ravindran, and Anoop
Namboodiri. Towards Accurate Vehicle Behaviour Clas-
sification With Multi-Relational Graph Convolutional Net-
works. In 2020 IEEE Intelligent Vehicles Symposium (IV),
pages 321–327, Oct. 2020. ISSN: 2642-7214. 2, 3, 8, 9, 10

[28] Demin Nalic, Tomislav Mihalj, Maximilian Baeumler,
Matthias Lehmann, Arno Eichberger, and Stefan Bernsteiner.
Scenario Based Testing of Automated Driving Systems: A
Literature Survey. Oct. 2020. 1

[29] Christian Neurohr, Lukas Westhofen, Tabea Henning, Thies
de Graaff, Eike Möhlmann, and Eckard Böde. Fundamen-
tal Considerations around Scenario-Based Testing for Auto-
mated Driving. In 2020 IEEE Intelligent Vehicles Symposium
(IV), pages 121–127, Oct. 2020. ISSN: 2642-7214. 1

[30] Julia Nilsson, Jonas Fredriksson, and Erik Coelingh. Rule-
Based Highway Maneuver Intention Recognition. In 2015
IEEE 18th International Conference on Intelligent Trans-
portation Systems, pages 950–955, Sept. 2015. ISSN: 2153-
0017. 2, 3

[31] Stefan Riedmaier, Thomas Ponn, Dieter Ludwig, Bernhard
Schick, and Frank Diermeyer. Survey on Scenario-Based
Safety Assessment of Automated Vehicles. IEEE Access,
8:87456–87477, 2020. Conference Name: IEEE Access. 1

[32] Zihao Sheng, Yunwen Xu, Shibei Xue, and Dewei Li.
Graph-Based Spatial-Temporal Convolutional Network for
Vehicle Trajectory Prediction in Autonomous Driving.
IEEE Transactions on Intelligent Transportation Systems,
23(10):17654–17665, Oct. 2022. Conference Name: IEEE
Transactions on Intelligent Transportation Systems. 2, 3

[33] Matteo Simoncini, Douglas Coimbra de Andrade, Leonardo
Taccari, Samuele Salti, Luca Kubin, Fabio Schoen, and
Francesco Sambo. Unsafe Maneuver Classification From
Dashcam Video and GPS/IMU Sensors Using Spatio-
Temporal Attention Selector. IEEE Transactions on In-
telligent Transportation Systems, 23(9):15605–15615, Sept.
2022. Conference Name: IEEE Transactions on Intelligent
Transportation Systems. 2

[34] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15:1929–1958, 06 2014. 2

[35] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han,
Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott Et-
tinger, Maxim Krivokon, Amy Gao, Aditya Joshi, Sheng
Zhao, Shuyang Cheng, Yu Zhang, Jonathon Shlens, Zhifeng
Chen, and Dragomir Anguelov. Scalability in Perception
for Autonomous Driving: Waymo Open Dataset, May 2020.
arXiv:1912.04838 [cs, stat]. 3

[36] Simon Ulbrich, Till Menzel, Andreas Reschka, Fabian
Schuldt, and Markus Maurer. Defining and Substantiating
the Terms Scene, Situation, and Scenario for Automated
Driving. In 2015 IEEE 18th International Conference on

Intelligent Transportation Systems, pages 982–988, Sept.
2015. ISSN: 2153-0017. 3

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Il-
lia Polosukhin. Attention Is All You Need, Dec. 2017.
arXiv:1706.03762 [cs]. 2

[38] Nannan Wang, Xi Wang, Paparao Palacharla, and Tadashi
Ikeuchi. Cooperative autonomous driving for traffic conges-
tion avoidance through vehicle-to-vehicle communications.
In 2017 IEEE Vehicular Networking Conference (VNC),
pages 327–330, Nov. 2017. ISSN: 2157-9865. 1

[39] Jamie Ward, Paul Lukowicz, and Gerhard Tröster. Evaluat-
ing Performance in Continuous Context Recognition Using
Event-Driven Error Characterisation. pages 239–255, May
2006. 7

[40] Jamie A Ward, Nagendra B Bharatula, Gerhard Troster,
and Paul Lukowicz. Continuous activity recognition in the
kitchen using miniaturised sensor button. 7

[41] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lam-
bert, Jagjeet Singh, Siddhesh Khandelwal, Bowen Pan, Rat-
nesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes,
Deva Ramanan, Peter Carr, and James Hays. Argoverse 2:
Next Generation Datasets for Self-Driving Perception and
Forecasting. 3

[42] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lam-
bert, Jagjeet Singh, Siddhesh Khandelwal, Bowen Pan, Rat-
nesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes,
Deva Ramanan, Peter Carr, and James Hays. Argoverse 2:
Next generation datasets for self-driving perception and fore-
casting. In Proceedings of the Neural Information Process-
ing Systems Track on Datasets and Benchmarks (NeurIPS
Datasets and Benchmarks 2021), 2021. 2, 3

[43] Fisher Yu and Vladlen Koltun. Multi-Scale Con-
text Aggregation by Dilated Convolutions, Apr. 2016.
arXiv:1511.07122 [cs]. 2, 6

14


